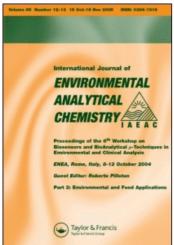
This article was downloaded by:


On: 19 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

International Journal of Environmental Analytical Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713640455

Application of a Thermo-Denuder Analyser to the Determination of H_2SO_4 , HNO_3 and NH_3 in Air

J. Slanina^a; L. V. Lamoen-doornenbal^a; W. A. Lingerak^a; W. Meilof^a; D. Klockow^b; R. Nießner^b
^a Netherlands Energy Research Foundation (E.C.N.), Petten, N.H., The Netherlands ^b University of Dortmund, Dortmund, Federal Republic of Germany

To cite this Article Slanina, J. , Lamoen-doornenbal, L. V. , Lingerak, W. A. , Meilof, W. , Klockow, D. and Nießner, R.(1981) 'Application of a Thermo-Denuder Analyser to the Determination of ${\rm H_2SO_4}$, HNO $_3$ and NH $_3$ in Air', International Journal of Environmental Analytical Chemistry, 9: 1, 59 - 70

To link to this Article: DOI: 10.1080/03067318108071509
URL: http://dx.doi.org/10.1080/03067318108071509

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Intern. J. Environ. Anal. Chem., 1981, Vol. 9, pp. 59-70 0306-7319/81/0901-0059 \$06.50/0 © Gordon and Breach Science Publishers Inc., 1981 Printed in Great Britain

Application of a Thermo-Denuder Analyser to the Determination of H_2SO_4 , HNO_3 and NH_3 in Air

J. SLANINA, L. v. LAMOEN-DOORNENBAL, W. A. LINGERAK and W. MEILOF

Netherlands Energy Research Foundation (E.C.N.), Petten (N.H.), The Netherlands

anď

D. KLOCKOW and R. NIEBNER

University of Dortmund, Dortmund, Federal Republic of Germany

(Received August 14, 1980)

The thermoanalytical method for speciation of atmospheric strong acids developed by Nießner and Klockow has been extended to the measurement of the HNO₃/H₂SO₄/NH₃ system in air.

A series of coated tubes operated at different temperatures are used to collect selectively nitrate- and sulphate-containing atmospheric trace compounds as well as free ammonia. HNO₃ and NH₃ are collected at room temperature by NaF- and H₃PO₄-coated tubes, respectively. H₂SO₄ and HNO₃ resulting from the dissociation of NH₄NO₃ are collected by the NaF coating of a denuder tube heated to 390-410 K. The liberated NH₃ (from NH₄NO₃) is deposited in a subsequent H₃PO₄-coated tube. At 490-510 K ammonium sulphates decompose forming H₂SO₄ and NH₃. The fragments are trapped in the same way using tubes with a NaF and a H₃PO₄ layer, respectively. All tubes are washed out with water. In the extracts NO₃ and SO₄² are determined by ion-chromatography, NH₄⁺ by means of an ion-selective electrode.

KEY WORDS: HNO₃, H₂SO₄, NH₄NO₃, NH₄HSO₄, (NH₄)₂SO₄; Aerosol sampling, thermoanalysis.

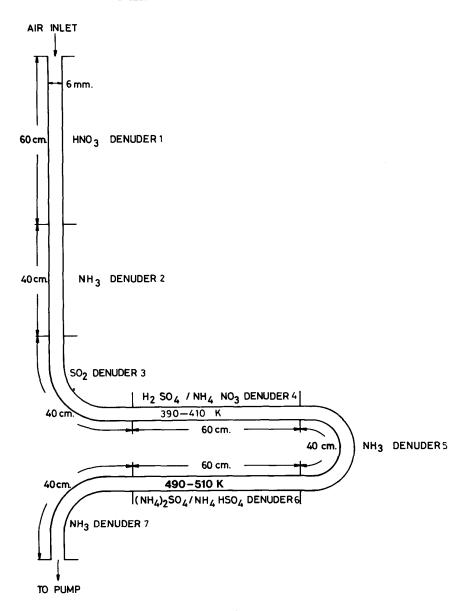
INTRODUCTION

Filter methods for the determination of H₂SO₄ and HNO₃ are susceptible to interferences.^{1,2} A possible solution for the H₂SO₄ problem was given by Cobourn *et al.*³ applying a thermodiffusion denuder in connection to a

flame emission sulphur analyser. For the determination of HNO₃ a denuder difference technique has been proposed.⁴

Recently Nießner and Klockow developed a thermoanalytical method for the determination of H₂SO₄ in air.⁵ The acid droplets are thermally evaporated in a heated glass tube and the small fragments formed are collected on the walls of the tube by diffusion-controlled deposition. Sulphuric acid is bonded by means of a sodium chloride coating on the walls and is determined by analysing the coating for sulphate. Sulphate and bisulphate salt particles pass through the tube unaffected, dependent on the temperature of the tube and the flow rate.

The application of this method to the $HNO_3/H_2SO_4/NH_3$ system was investigated. An aerosol particle will not reach the wall of a tube as long as the flow is laminar, whereas gases will diffuse to the wall. Therefore a separation of gaseous HNO_3 and NH_3 from H_2SO_4 droplets or sulphate particles is possible. Furthermore H_2SO_4 and ammonium sulphates, $(NH_4)_xH_y(SO_4)_{1/2(x+y)}$, can be distinguished by their different thermal behaviour.


A characterization of the H₂SO₄/HNO₃/NH₃ system in air is in principle possible if a number of tubes which contain suitable wall coatings and which are operated at different temperatures is placed in series. Strong acids rapidly react with a NaF coating, whereas NH₃ is effectively absorbed by H₃PO₄.

GENERAL SET-UP OF THE METHOD

HNO₃ is presumably present as a gas in the atmosphere and reacts at room temperature with the wall coating of a denuder tube. NH₄NO₃ is probably partly dissociated into NH₃ and HNO₃ at ambient temperature.^{6,7} We measured a complete dissociation at 410 K at concentrations of about 4000 µg·m⁻³ NH₄NO₃. H₂SO₄ will reach the wall of the tube 390-410 K because of at $(NH_4)_xH_y(SO_4)_{1/2(x+y)}$ decomposes sufficiently fast into x NH₃ and 1/2(x +y) H₂SO₄ at 490-510 K to allow a complete reaction of the H₂SO₄ formed with the coating of a denuder tube.⁵ NH₃ can be trapped separately.

We tested different coatings for HNO_3 , H_2SO_4 and NH_3 . HNO_3 and H_2SO_4 react rapidly with NaCl and NaF. As we use ion-chromatography to determine NO_3^- and SO_4^{2-} after having dissolved the coating we prefer NaF, which does not interfere even at high concentrations. NH_3 reacts very rapidly with a H_3PO_4 coating.

As a simultaneous detection of all SO_4^{2-} and NO_3^{-} species was desired, a set-up of 7 tubes, connected in series, was tested (see Figure 1):

HNO3/H2 SO4/NH3 MEASUREMENT IN AIR.

FIGURE 1 General set-up of the apparatus.

- Tube 1: Ambient temperature, coated with NaF; HNO₃ is retained.
- Tube 2: Ambient temperature, coated with H₃PO₄; free NH₃ is absorbed.
- Tube 3: Ambient temperature, coated with NaOH; SO₂ (a possible interferent) is trapped.
- Tube 4: Temperature is 390 to 410 K, coated with NaF; H₂SO₄ is retained; NH₄NO₃ (if any) dissociates and the resulting HNO₃ reacts with NaF.
- Tube 5: Ambient temperature, coated with H₃PO₄; NH₃ (from NH₄NO₃ dissociation) is retained.
- Tube 6: Temperature is 490-510 K, coated with NaF; H_2SO_4 resulting from $(NH_4)_xH_y(SO_4)_{1/2(x+y)}$ dissociation is retained.
- Γube 7: Ambient temperature, coated with H₃PO₄; NH₃ resulting from the decomposition of ammonium sulphates is retained.

EXPERIMENTAL

Generation of test atmospheres

 H_2SO_4 and $(NH_4)_2SO_4$ aerosols were generated by nebulizing aqueous solutions by means of a Wright nebulizer.⁸ The droplets (ca. $2 \mu m$ diameter) were carried by the nebulizer gas flow (101 $N_2 min^{-1}$) to a glass tube (diam. 20 cm, length 2.5 m) and mixed with dry gas (201 $N_2 min^{-1}$) to evaporate the droplets (see Figure 2). Measurements indicated that the diameters of the final particles were in the range of 0.3–0.01 μ , depending on the concentration of the nebulized solution.

 H_2SO_4 aerosols were also generated by the method of Nießner and Klockow where gas is passed over heated concentrated H_2SO_4 . We employed this method because the particles are very small $(0.03 \,\mu)$ and nearly monodisperse. In this way we were able to test whether the particle diameter influenced the results of the method. Ammonium sulphate particles with a comparable diameter can be generated by the reaction of NH_3 with the sulphuric acid aerosol.

 $\mathrm{HNO_3}$ test atmospheres can be obtained by evaporating a nebulized $\mathrm{HNO_3}$ solution. At low concentrations of $\mathrm{HNO_3}$, however, difficulties arise because of ad- and desorption processes at the glass wall of the generator tube. It will take at least 48 h before a stable test atmosphere, containing about $10\,\mu\mathrm{g}$ $\mathrm{HNO_3}$ m⁻³, is obtained. A better method to create low $\mathrm{HNO_3}$ concentrations is given in Figure 3. Concentrated $\mathrm{HNO_3}$ is thermostated in a glass vessel at 303.5 K. A capillary is connected to the vessel by a NS 14 groundjoint. The $\mathrm{HNO_3}$ production can be regulated

FIGURE 2 Apparatus for the generation of test aerosols.

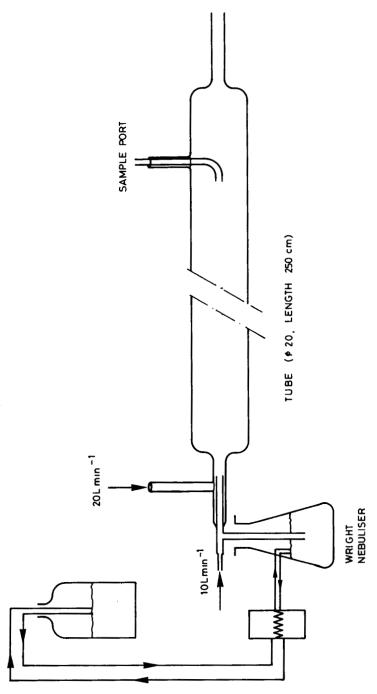


FIGURE 3 Apparatus for the generation of HN₃ containing test atmospheres.

by changing the diameter and length of the capillary and the temperature of the HNO₃.¹⁰

NO₂ and SO₂ were obtained from standard permeation tubes. NO was generated by a permeation tube consisting of a stainless steel body and a thick teflon membrane (the pressure is 20–30 bar).

Coatings were as follows. NaF: 0.5 ml of 0.05 M NaF in 1:1 water-methanol is brought into the tube. The walls are wetted with the reagent and the solvent is evaporated under vacuum. H₃PO₃: 0.5 ml of 0.015 M H₃PO₄ in methanol is used; procedure is the same as for NaF. NaOH: 0.5 ml of 0.1 M NaOH in methanol is employed in the same procedure as described for NaF.

Determination of SO₄²⁻, NO₃⁻ and NH₄⁺

The tubes are washed out with 5 ml (in case of NaF-coated tubes) or 2 ml (H_3PO_4 -coated tubes) of doubly deionized water. NH_4^+ is measured by means of a gas-sensing membrane electrode, equipped with a 1-ml sample cell. 11 NO_3^- and SO_4^{2-} are determined by ion-chromatography. A 4-ml sample is pumped through a concentrator-column filled with Zipax-SAX ion-exchanger. The ion-chromatograph is adapted to obtain a high resolution and low detection limit (ca. 10 ppb). 12

RESULTS

H₂SO₄ analysis

The efficiency of tube 4 (390–410 K) for H_2SO_4 was tested at high concentrations (400 $\mu g \cdot m^{-3}$) by comparison with filter measurements, and was found to be $\geq 98 \%$, in agreement with the results obtained earlier by Nießner and Klockow⁵ and Cobourn *et al.*³ The precision of the method was tested by repeated analysis of a test aerosol containing about $10 \mu g \cdot m^{-3}$ of H_2SO_4 (calculated from the H_2SO_4 concentration of the nebulized solution). A mean value of 8.7 μg with a standard deviation of $\pm 1.0 \mu g \cdot m^{-3}$ of H_2SO_4 was found (n=5). No SO_4^{2-} was detected in the other tubes at sample flow rates of up to $21 \cdot min^{-1}$. At higher flow rates SO_4^{2-} was found in tube 6 also (see Figure 4).

The detection limit (at a sample flow rate of $21 \cdot min^{-1}$ and a sampling time of 4 h) is $0.4 \, \mu g \cdot m^{-3}$ of H_2SO_4 .

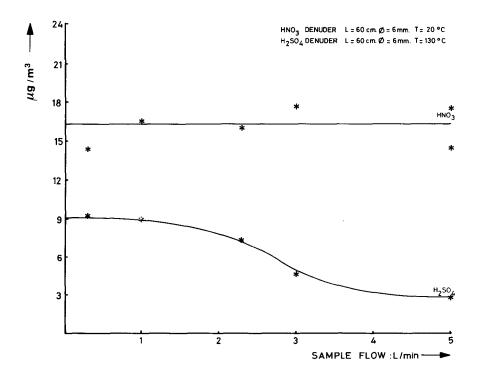


FIGURE 4 Concentration of H₂SO₄ and HN₃ found in air as a function of the sample flow.

HNO, analysis

The collecting efficiency of NaF was tested between 290 and 430 K and was found to be 95% or higher independent of the temperature. Above 360 K HF was liberated by HNO₃. All HNO₃ was retained in tube 1, no NO_3^- was detected in the other tubes at sample flow rates of up to $31 \cdot \text{min}^{-1}$ (see Figure 4). The precision was tested by repeated analysis of a HNO₃ test atmosphere, and a concentration of $15.8 \pm 1.5 \, \mu\text{g} \cdot \text{m}^{-3}$ HNO₃ was found (n=5). Figure 5 gives the amount of HNO₃ found as a function of the sample volume. At a sample flow rate of $21 \cdot \text{min}^{-1}$ and a sampling time of 4 h the detection limit is $0.2 \, \mu\text{g} \cdot \text{m}^{-3}$ HNO₃.

NH₃ analysis

We employed the method of Ferm et al., ¹³ but H₃PO₄ was used as a coating instead of oxalic acid. Because of its vapor pressure oxalic acid disappears from tubes 5 and 7 by sublimation (elevated temperature of the

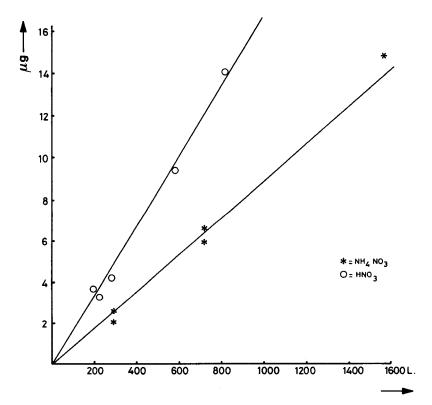


FIGURE 5 Amount of HNO₃ and NH₄NO₃ found (μg) as function of the sample volume.

carrier gas) during the sampling period. We encountered severe blank problems, which are currently investigated, but the sampling is no problem as one can conclude from Figure 6.

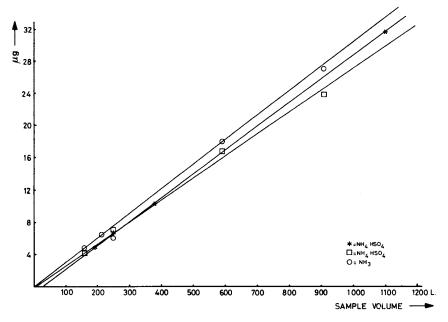


FIGURE 6 Amount of NH₃, NH₄HSO₄ and (NH₄)₂SO₄ found (µg) as function of the sample volume.

NH₄NO₃ analysis

Experiments at Dortmund and E.C.N. indicated that no or very little dissociation of NH_4NO_3 takes place when test aerosols containing $4000 \,\mu g \cdot m^{-3}$ of NH_4NO_3 are passed through a denuder tube at 290 K. Appreciable dissociation is found, however, at a temperature of 340 K. Also a test atmosphere with a concentration of $20 \,\mu g \cdot m^{-3}$ of NH_4NO_3 was analysed (tube 1 at room temperature). At least half of the NO_3^- was found in tube 1 and half of the NH_3 in tube 2 indicating that in this case NH_3NO_3 was dissociated partly into NH_3 and HNO_3 .^{6,7} If NH_3 was added to inhibit the dissociation all NO_3^- was found in tube 4 (393 K) at sample flow rates of up to $21 \cdot min^{-1}$.

The precision was checked by repeated analysis of a NH_4NO_3 test aerosol, which was stabilised by the addition of free NH_3 . The result was $8.1 \pm 1.5 \,\mu g \, NH_3NO_3^- \, (n=5)$. Figure 6 gives the amount of NH_4NO_3

found as a function of the sample volume. The NH_4/NO_3 ratio was calculated from the NH_4^+ content of tube 5 and the NO_3^- content of tube 4 and was found to be 1.3, probably because of blank problems.

$(NH_4)_x H_y (SO_4)_{1/2(x+y)}$ analysis

The efficiency of the capture of H_2SO_4 produced by dissociation of $(NH_4)_xH_y(SO_4)_{1/2(x+y)}$ in tube 6 at 490–510 K was tested at a concentration of 400 μ g·m⁻³ of NH_4HSO_4 and $(NH_4)_2SO_4$ by comparison with filter measurements and was found to be $\geq 98\%$ at sample flow rates of up to $11 \cdot \text{min}^{-1}$ (see also Figure 7). At this concentration all NH_3 resulting from the dissociation of the sulphates was found in tube 7. The NH_4^+/SO_4^{2-} ratio observed for $(NH_4)_2SO_4$ varied between 1.8 and 2.2.

At lower sulphate concentrations (below $30 \,\mu\mathrm{g} \cdot \mathrm{m}^{-3}$) and at sample flow rates of up to $11 \cdot \mathrm{min}^{-1}$ the situation was different. If NH₄HSO₄

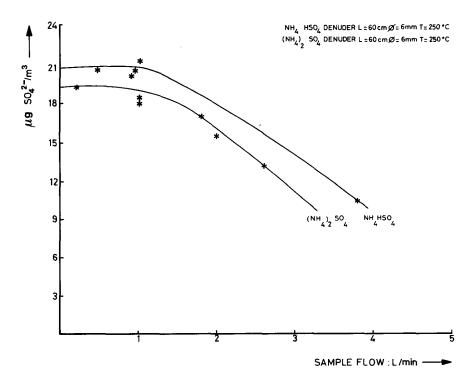


FIGURE 7 Concentration of NH₄HSO₄ and (NH₄)₂SO₄ found in air as a function of the sample flow.

was sampled, all NH_4^+ was found in tube 7, but in the case of $(NH_4)_2SO_4$ about equal amounts of NH_4^+ were measured in tube 5 and in tube 7. This indicates that at low concentrations $(NH_4)_2SO_4$ dissociates already in tube 4 at about 400 K according to $(NH_4)_2SO_4 \rightleftarrows NH_3 + NH_4HSO_4$. This phenomenon could possibly be a help in the speciation of $(NH_4)_2H_4(SO_4)_{1/2(x+y)}$ and will be further investigated.

The precision of the measurements of ammonium sulphates was tested by repeated analysis of test aerosols containing ca. $25 \,\mu \text{g} \cdot \text{m}^{-3}$ of NH_4HSO_4 and $(NH_4)_2SO_3$, respectively. Concentrations of 25.8 $\pm 1.5 \,\mu \text{g} \cdot \text{m}^{-3}$ of NH_4HSO_4 with a NH_4^+/SO_4^{2-} ratio of 1.1 and 24.9 $\pm 1.6 \,\mu \text{g}$ (NH_4) $_2SO_4 \,\text{m}^{-3}$ with a NH_4^+/SO_4^{2-} ratio of 2.2 were found. Again blank problems are responsible for the high NH_4^+/SO_4^{2-} ratios. The detection limit for NH_4HSO_4 and $(NH_4)_2SO_4$ in tube 6 at a sample flow of $11 \cdot \text{min}^{-1}$ and a sampling time of 4 h is $0.4 \,\mu \text{g} \cdot \text{m}^{-3}$.

INTERFERENCES

A quite detailed report about possible interferences of the described method is given by Nießner and Klockow.⁵ The possible influence of SO_2 was reexamined. In addition the effects of NO, NO_2 and HNO_2 (prepared from $NaNO_2$ and H_2SO_4) were investigated. Air containing up to $1000 \,\mu g \, SO_2$, $100 \,\mu g \, NO$, $400 \,\mu g \, NO_2$ and $200 \,\mu g \, HNO_2$ per m³ was sampled several times, the sample period being varied between 5 min and 6 h. A very slight deposition of SO_2 was found in tube 4 (393 K). Obviously the NaOH coating of tube 3 effectively removes the SO_2 . NO, NO_2 and HNO_2 did not interfere at all.

INITIAL FIELD MEASUREMENTS

Some initial field measurements have been performed at E.C.N. The prototype sampler we used was not optimal because of an inaccurate temperature control of tubes 4 and 6 and because of an improper design of the sample inlet. Therefore impaction of aerosol particles at the entrance of the first tube may occur and generate erroneous information.

Though the results of these field measurements can be interpreted only with certain reservations, they indicate that HNO₃, NH₃, H₂SO₄, NH₄NO₃ and ammonium sulphates can be detected separately by using the sampling system described. The maximum concentrations measured were 5.0 μ g HNO₃, 2.3 μ g NH₃, 3.8 μ g H₂SO₄, 8.0 μ g NH₄NO₃ and 19.8 μ g SO₄² (from (NH₄)_xH_y(SO₄)_{1/2(x+y)}) per m³.

The dissociation of $(NH_4)_2SO_4$ into NH_3 and NH_4HSO_4 is not observed very clearly in these field measurements. Insufficient temperature

control of tube 4 could be the reason. Besides, ternary sulphate mixtures which react in a different thermochemical way may have been present.

CONCLUSIONS

Laboratory experiments and some initial field measurements indicate that the described method is a better approach to the characterization of the HNO₃/H₂SO₄/NH₃ system in air than are filter techniques.

Additional laboratory experiments and refinements in the field measurements are necessary to improve the method. Especially the determination of NH_4NO_3 and of $(NH_4)_xH_y(SO_4)_{1/2(x+y)}$ species is still a problem.

Literature

- 1. D. Klockow, B. Jablonski and R. Nießner, Atmos. Environ. 13, 1665 (1979).
- R. K. Stevens, Ed., Current Methods to Measure Atmospheric Nitric Acid and Nitrate Artifacts, EPA-600/2-79-051, March 1979.
- 3. W. G. Cobourn, R. B. Husar and J. D. Husar, Atmos. Environ. 12, 89 (1978).
- 4. R. W. Shaw, T. G. Dzubay and R. K. Stevens; loc. cit. ref. 2, p. 79.
- 5. R. Nießner and D. Klockow, Int. J. Environ. Anal. Chem., in press.
- 6. A. W. Stelson, S. K. Friedlander and J. H. Seinfeld, Atmos. Environ. 13, 369 (1979).
- J. J. Doyle, E. C. Tuazon, R. A. Graham, T. M. Mischke, A. M. Winer and J. N. Pitts, Jr., Env. Sci. Technol. 13, 1416 (1979).
- 8. B. M. Wright, Lancet 2, 24 (1958).
- 9. R. Nießner and D. Klockow, Anal. Chem. 52, 594 (1980).
- G. O. Nelson, Controlled Test Atmospheres, Ann Arbor Science Publishers, Ann Arbor, Michigan, 1972, p. 126 ff.
- J. Slanina, F. Bakker, J. J. Möls, J. E. Ordelman and A. G. M. Bruyn-Hes, Anal. Chim. Acta 112, 45 (1979).
- 12. J. Slanina, Workshop on Ion-Chromatography, June 2-3, 1980, Petten, The Netherlands.
- 13. M. Ferm, Atmos. Environ. 13, 1385 (1979).
- 14. W. D. Scott and F. C. R. Cattell, Atmos. Environ. 13, 307 (1979).